

GENERAL DESCRIPTION

OB2287 is a highly integrated current mode PWM controller for medium to large offline power converter applications.

Brownout Detection and Shutdown Protection (BOP) is a standard protection feature to OB2287. OB2287 offers comprehensive protection coverage including Cycle-by-Cycle current limiting, internal Power-On Soft Start, VDD Under Voltage (UVLO). VDD Over Lockout Voltage Protection(OVP), VDD Clamp, Gate Clamp, Over Protection(OLP), Load Over Temperature Protection (OTP), Brownout Protection (BOP). OB2287 also features protections against pin open and short conditions on selected pins.

On-Bright proprietary OCP compensation scheme monitors PWM duty cycle and adjusts OCP threshold accordingly at CCM or DCM mode to achieve constant output power limiting across universal AC input. Moreover, an internal 1second restart timer prevents permanent OLP latch when the supply of the controller is provided by other DC sources. In applications where supply is self biased by auxiliary winding, this restart timer will not be triggered.

On-Bright proprietary frequency shuffling technique in OB2287 helps to lower the system design barrier to achieve good EMI performance together with soft switching control at the totem pole gate drive output.

In meeting the increasing stringent standby power requirements at light or no load condition, On-Bright proprietary "Extended Burst Mode"

TYPICAL APPLICATION

technology enable high performance system design without compromise in audio noise. OB2287 is offered in SOP-8 and DIP-8 packages.

FEATURES

- AC Line Brownout Detection & Protection (BOP)
- Latch-off Mode Fault Protection
- Internal Restart Timer
- All pins floating protection and RI short protection
- Proprietary Extended Burst Mode Control For Improved Efficiency and Minimum Standby Power Design
- Audio Noise Free Operation
- External Programmable PWM Switching Frequency
- Built-in Frequency Shuffling for Better EMI
- Internal Leading Edge Blanking
- Proprietary OCP Compensation for Universal AC Input Range
- High Precision Reference Voltage for OTP and Brownout Protection
- Power-On Soft Start
- Internal Synchronized Slope Compensation
- 1A Peak Current Drive Sink Capability

APPLICATIONS

Offline Flyback or Forward AC/DC converters for

- Printer
- Adaptor

EMI Filter

- LCD Monitor/TV/PC/Set-Top Box Power Supplies
- Open-frame SMPS

Typical Flyback Circuit

Typical Forward Circuit

©On-Bright Electronics

DC Out

GENERAL INFORMATION

Pin Configuration

The pin map of OB2287 in DIP8 and SOP8 package is shown as below.

Ordering Information

Description
DIP8, Pb-free
SOP8, Pb-free
SOP8,Pb-free in Taping

Note: All Devices are offered in Pb-free Package if not otherwise noted.

Package Dissipation Rating

Package	RθJA (℃/W)	Δ,
DIP8	90	X_{2}
SOP8	150	K

Absolute Maximum Ratings

Parameter	Value
VDD Clamp Voltage	31 V
VDD Clamp Continuous Current	10 mA
FB Input Voltage	-0.3 to 7V
SENSE Input Voltage	-0.3 to 7V
RT Input Voltage	-0.3 to 7V
RI Input Voltage	-0.3 to 7V
Min/Max Operating Junction Temperature T_J	-20 to 150 ℃
Min/Max Storage Temperature T _{stg}	-55 to 150 ℃
Lead Temperature (Soldering, 10secs)	260 ℃

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Marking Information

Y:Year Code(0-9) WW:Week Code(01-52) C:SOP8 Package P:Pb-free Package S:Internal Code(Optional)

Y: Year Code(0-9) WW: Week Code(01-52) A: DIP8 Package P: Pb-free Package S: Internal Code(Optional)

TERMINAL ASSIGNMENTS

Pin Num	Pin Name	I/O	Description
1	GND	Р	Ground
2	FB	I	Feedback input pin. PWM duty cycle is determined by voltage level into this pin and current-sense signal level at Pin 6.
3	во	I/O	Connected a resistor divider from line voltage to this pin to detect line voltage. If this pin drops below 1.05V and lasts 50ms, PWM output will be disabled. When brownout is triggered, this pin will source an internal trimmed current for brownout hysteresis programming.
4	RI	I	Internal Oscillator frequency setting pin. A resistor connected between RI and GND sets the PWM frequency.
5	RT	I	Dual function pin. Either connected through a NTC resistor to GND for over temperature protection control or used as the latch shutdown control input.
6	SENSE	Ι	Current sense input pin. Connected to MOSFET current sensing resistor node.
7	VDD	Р	DC power supply pin.
8	GATE	0	Totem-pole gate drive output for power MOSFET.

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITION

Symbol	Parameter	Min	Max	Unit
VDD	VDD Supply Voltage	11.5	25	V
RI	RI Resistor Value	10	40	Kohm

257-051×

ELECTRICAL CHARACTERISTICS

Symbol Supply Voltage (\	⟨ ohm, VDD=16V, if no Parameter ⟨DD) Section	Test Conditions	Min	Тур	Max	Unit
_VDD_Startup	VDD Start up Current	VDD =13.5V, RI=20K Measure current into VDD		5	20	uA
I_VDD_Ops	Operation Current	VDD V _{FB} =3V		2.3		mA
UVLO(Enter)	VDD Under Voltage Lockout Enter		8.5	9.5	10.5	v
UVLO(Exit)	VDD Under Voltage Lockout Exit (Startup)		14.9	15.9	16.9	V
OVP(Latch)	VDD Over Voltage Latch Trigger		26	28	30	V
VDD(De-Latch)	VDD Latch Release Voltage Threshold			6.5		V
I(Vdd)_latch	VDD current at latch shutdown	VDD=8V		45		uA
T _D OVP	VDD OVP Debounce time	• •	7	100		uSec
V _{DD} _Clamp	V _{DD} Zener Clamp Voltage	I(V _{DD}) = 15 mA		31		V
T_Softstart	Soft Start Time			4		mSec
Feedback Input S		Y				
A _{VCS}	PWM Input Gain	$\Delta V_{FB} / \Delta V_{cs}$		2.2		V/V
V _{FB} Open	V _{FB} Open Voltage	VDD=18V		6		V
I _{FB} _Short	FB pin short circuit current	VDD=18V, Short FB pin to GND, measure current		1.1		mA
V _{FB} _0D	Zero Duty Cycle FB Threshold Voltage				1	V
V _{TH} _BM	Burst Mode FB Threshold Voltage			1.6		V
V _{TH} _PL	Power Limiting FB Threshold Voltage			4.4		V
T _D _PL	Power limiting Debounce Time			250		mSec
Z _{FB} IN	Input Impedance			6		Kohm
	put(Sense Pin) Section					
T_blanking	Sense Input Leading Edge Blanking Time	VDD=18V		300		nSec
V _{TH} OC	Internal current limiting threshold		0.67	0.7	0.73	V
T _D _OC	Propagation delay to Gate	CL=1nF at GATE,		70		nSec
Oscillator Section						
F _{osc}	Normal Oscillation Frequency		60	65	70	KHZ
∆F(shuffle)/Fosc	Frequency shuffling range		-4		4	%
F_shuffle	Frequency shuffling cycling frequency			32		Hz

©On-Bright Electronics

Δf_Temp	Frequency Temperature Stability	-20°C to 100 °C		3		%
Δf_VDD	Frequency Voltage Stability	VDD = 12-28V,		3		%
Dmax	Maximum Duty cycle			80		%
Dmin	Minimum Duty cycle		-	-	0	%
RI_range	Operating RI Range		10	20	40	Ko
V RI	RI Operation Voltage			2.0		V
_ F_BM	Burst Mode Base Frequency			22	- 1	Кŀ
Gate Drive Output			•			
VOL	Output Low Level	lo = 30 mA (sink)			0.3	V
VOH	Output High Level	lo = 30 mA (source)	11			V
VG_Clamp	Output Clamp Voltage Level			17		V
Tr	Output Rising Time	CL = 1nF	X	70		nS
<u> </u>	Output Falling Time	CL = 1nF		30		nS
Over Temperatu		<u> </u>	I			1.10
I_RT	Output Current of RT	VDD = 18V	S	100		uA
V _{TH} OTP	OTP Threshold Voltage	VDD = 18V	1.0	1.05	1.1	V
$V_{TH}OTP_off$	OTP Recovery Threshold Voltage	VDD = 18V		1.15		V
$V_{TH}RT_latch$	RT Input Latch Threshold Voltage	VDD=18V		0.6		V
T _D OTP	OTP De-bounce Time	VDD = 18V		100		uS
V_RT_Open	RT Pin Floating Voltage	VDD = 18V		3.2		V
Brownout Section						
Vth_BO	Brownout comparator threshold		1	1.05	1.1	V
T _D BO	Brownout debounce time			50		ms
IBO_hys	Source Current for Brownout Hysteresis Programming			2		uA
Restart Timer Se		1	T	T	-	
	Auto recovery Restart timer			1		Se

CHARACTERIZATION PLOTS

on the

OPERATION DESCRIPTION

OB2287 is a highly integrated high performance PWM controller IC optimized for offline converter applications in flyback and forward modes. The versatile protection features and high performance features make it very competitive for medium-tolarge power converter applications.

• Startup Current and Start up Control

Startup current of OB2287 is designed to be very low so that VDD could be charged up above UVLO(exit) threshold level and device starts up quickly. A large value startup resistor can therefore be used to minimize the power loss yet reliable startup in application. For a typical AC/DC adaptor with universal input range design, a 2 M Ω , 1/8 W startup resistor could be used together with a VDD capacitor to provide a fast startup and yet low power dissipation design solution.

• Operating Current

The Operating current of OB2287 is low at 2.3mA. Good efficiency is achieved with OB2287 low operating current together with extended burst mode control schemes.

• Extended Burst Mode Operation

At zero load or light load condition, most of the power dissipation in a switching mode power supply is from switching loss on the MOSFET transistor, the core loss of the transformer and the loss on the snubber circuit. The magnitude of power loss is in proportion to the number of switching events within a fixed period of time. Reducing switching events leads to the reduction on the power loss and thus conserves the energy. OB2287 self adjusts the switching mode according to the loading condition. At from no load to light/medium load condition, the FB input drops below burst mode threshold level. Device enters Burst Mode control. The Gate drive output switches only when VDD voltage drops below a preset level and FB input is active to output an on state. Otherwise the gate drive remains at off state to minimize the switching loss thus reduce the standby power consumption to the greatest extend.

The nature of high frequency switching also reduces the audio noise at any loading conditions.

• Oscillator/Frequency Shuffling Operation

A resistor connected between RI and GND sets the constant current source to charge/discharge

the internal cap and thus the PWM oscillator frequency is determined. The relationship between RI and switching frequency follows the below equation within the specified RI in Kohm range at nominal loading operational condition.

$$F_{osc} = \frac{1300}{RI(Kohm)}(Khz)$$

In OB2287, the proprietary frequency shuffling method can soften the EMI signature by spreading the energy in the vicinity of the main switching component and its harmonics. The magnitude of shuffling lies in the range of $\pm 4\%$ of the main switching frequency.

• Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in OB2287 current mode PWM control. The switch current is detected by a sense resistor into the sense pin. An internal leading edge blanking circuit chops off the sense voltage spike at initial MOSFET on state due to snubber diode reverse recovery so that the external RC filtering on sense input is no longer needed. The current limit comparator is disabled and cannot turn off the external MOSFET during the blanking period. The PWM duty cycle is determined by the current sense input voltage and the FB input voltage.

Internal Synchronized Slope Compensation

Built-in slope compensation circuit adds voltage ramp onto the current sense input voltage for PWM generation. This greatly improves the close loop stability at CCM and prevents the subharmonic oscillation and thus reduces the output ripple voltage.

• Over Temperature Protection with Latch Shutdown

A NTC resistor in series with a regular resistor should connect between RT and GND for temperature sensing and protection. NTC resistor value becomes lower when the ambient temperature rises. With the fixed internal current I_{RT} flowing through the resistors, the voltage at RT pin becomes lower at high temperature. The internal OTP circuit is triggered and shutdown the MOSFET when the sensed input voltage is lower than V_{TH}OTP. OTP is a latched shutdown.

©On-Bright Electronics

RT Pin Used as Latch Shutdown Input Control

RT pin could also be used as a control input to implement system latch shutdown function.

An example is to implement system OVP protection with a latch shutdown function through a photo coupler and affiliated circuits. When OVP detection signal connected to RT is lower than V_{TH} OTP OB2287 controls system into latch shutdown. The recovery of the AC/DC system could only be realized by resetting internal latch when VDD voltage drops below VDD De-latch value. This could be achieved by unplugging/replugging of AC source in AC start-up configuration.

Brownout protection

By monitoring the voltage level on pin BO during normal operation, the controller protects the SMPS against low main condition. When BO voltage level falls below 1.05V, and if it lasts for about 50ms, the controller stops pulsing until this level goes back and the operation resumes. By adjusting the resistor divider connected between the high input voltage and this pin, start and stop levels are programmable.

Restart timer

In some special applications, such as LCDTV, the power supply of PWM stage is provided by other DC source and it is always on. The following diagram shows an AC/DC part of the LCDTV. The front end is a PFC stage, followed by a PWM stage. The PFC stage is controlled by PWM stage. A stand along standby converter provides the DC power supply for both PWM and PFC stages.

©On-Bright Electronics

In such situations, when the over loading protection (OLP) occurs, PWM stage will be latched of and it will not recover since it is powered by the standby DC supply. OB2287 overcomes this by an internal restart timer. When OLP occurs, then the timer begins counting. When counting over, the OLP states will be cleared. System tends to restart and auto-recover. If OLP still exists, then another counting cycle begins. The counting time in OB2287 is 1 second. Therefore, the nominal operation of OLP is not disturbed.

Pin floating and short protection

OB2287 provides pin floating protection for RI, CS, FB, etc., and RI pin short protection. In cases when the pin are floating or RI pin is shorted to ground, PWM switching is disabled, thus protect the power system.

OCP compensation for CCM/DCM

In OB2287, a proprietary OCP compensation is provided for better OCP performance in the universal input range. In conventional OCP compensation, only the gate delay is compensated. In OB2287, in addition to that, the mode difference between CCM and DCM is also compensated, since in 90VAC the system often works in CCM. In this way, a more accurate OCP is achieved over the entire line voltage range.

Overload Operation

When over load (for example, short circuit) occurs, a fault is detected. If this fault is present for more than 250ms, OB2287 enters an auto-recovery soft burst mode. All pulses are stopped, VDD will drops below UVLO and the controller will try to restart, with the power-on soft start. The SMPS resumes operation if the fault has gone. Otherwise, a burst sequence starts again.

Soft Start

OB2287 features an internal 4ms soft start to soften the constraints occurring in the power supply during startup. It is activated during the power on sequence. As soon as VDD reaches UVLO(exit), the peak current is gradually increased from nearly zero to the maximum clamping level 0.7V. The soft start is also activated during OLP sequence. Every restart attempt is followed by soft start.

Gate Drive

The PWM output is connected to the Gate of an external MOSFET for power switch control. Too weak the gate drive strength results in higher

conduction and switch loss of MOSFET while too strong gate drive output compromises the EMI. Good tradeoff is achieved through the built-in totem pole gate drive design with right output strength and dead time control. The low idle loss and good EMI system design is easier to achieve with this dedicated control scheme. An internal 17V clamp is added for MOSFET gate protection at higher than expected VDD input.

6

PACKAGE MECHANICAL DATA

8-Pin Plastic DIP

Symbol	Dimensions	In Millimeters	Dimension	s In Inches
	Min	Max	Min	Max
А	3.710	5.334	0.146	0.210
A1	V 0.381		0.015	
A2	2.921	4.953	0.115	0.195
В	0.350	0.650	0.014	0.026
B1	1.524	(BSC)	0.06 (BSC)
C	0.200	0.360	0.008	0.014
D	9.000	10.160	0.354	0.400
E Y	6.096	7.112	0.240	0.280
E1	7.320	8.255	0.288	0.325
e	2.540 (BSC)		0.1 (E	BSC)
L	2.921	3.810	0.115	0.150
E2	7.620	10.920	0.300	0.430

8-Pin Plastic SOP

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1 (0.050	0.250	0.002	0.010
A2	1.250	1.650	0.049	0.065
b	0.310	0.510	0.012	0.020
C	0.100	0.250	0.004	0.010
D	4.700	5.150	0.185	0.203
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
е	1.270	(BSC)	0.050 (BSC)	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8 °

IMPORTANT NOTICE

RIGHT TO MAKE CHANGES

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

WARRANTY INFORMATION

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. On-Bright Electronics Corp. assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet

and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

LIFE SUPPORT

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

MILITARY

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.