

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FIN1215 / FIN1216 / FIN1217/ FIN1218 LVDS 21-Bit Serializers / De-Serializers

Features

- Low Power Consumption
- 20MHz to 85MHz Shift Clock Support
- 50% Duty Cycle on the Clock Output of Receiver
- ±1V Common-mode Range ~1.2V
- Narrow Bus Reduces Cable Size and Cost
- High Throughput: 1.785Gbps
- Up to 595Mbps per Channel
- Internal PLL with No External Components
- Compatible with TIA/EIA-644 Specification
- Offered in 48-lead TSSOP Packages

Description

The FIN1217 and FIN1215 transform 21-bit wide parallel LVTTL (Low-Voltage TTL) data into three serial LVDS (Low-Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data stream over a separate LVDS link. Every cycle of transmit clock, 21 bits of input LVTTL data are sampled and transmitted.

The FIN1216 and FIN1218 receives and converts the three serial LVDS data streams back into 21 bits of LVTTL data. Table 1 provides a matrix summary of the serializers and de-serializers available. For the FIN1217, at a transmit clock frequency of 85MHz, 21 bits of LVTTL data are transmitted at a rate of 595Mbps per LVDS channel.

These chipsets solve EMI and cable size problems associated with wide and high-speed TTL interfaces.

Ordering Information

Part Number	Operating Temperature Range	Eco Status	Package	Packing Method				
FIN1215MTDX								
FIN1216MTDX								
FIN1217MTDX	-40 to + 85°C	RoHS	RoHS	RoHS	RoHS	RoHS	48-Lead Thin Shrink Small Outline Package (TSSOP)	Tape and Reel
FIN1218MTDX (Preliminary)								

Ø For Fairchild's definition of Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html</u>.

Part	CLK Frequency	LVTTL IN	LVDS OUT	LVDS IN	LVTTL OUT	Package
FIN1215	66	21	3			48-Lead TSSOP
FIN1216	66			3	21	48-Lead TSSOP
FIN1217	85	21	3			48-Lead TSSOP
FIN1218	85			3	21	48-Lead TSSOP

Pin Definitions

Pin Names	l/O Type	# of Pins	Description of Signals	
TxIn	I	21	LVTTL Level Inputs	
TxCKLIn	I	1	LVTTL Level Clock Input; the rising edge is for data strobe	
TxOut+	0	3	Positive LVDS Differential Data Output	
TxOut	0	3	Negative LVDS Differential Data Output	
TxCLKOut+	0	1	Positive LVDS Differential Clock Output	
TxCLKOut-	0	1	Negative LVDS Differential Clock Output	
/PwrDn	I	1	LVTTL Level Power-Down Input; assertion (LOW) puts the outputs in high- impedance state	
PLL V _{CC}	I	1	Power Supply Pin for LVDS Outputs	
PLL GND	I	2	Ground Pins for PLL	
LVDS V _{CC}	I	1	Power Supply Pins for LVDS Outputs	
LVDS GND	I	3	Ground Pin for LVDS Outputs	
Vcc	I	4	Power Supply Pins for LVTTL Inputs	
GND	I	5	Ground Pins for LVTTL Inputs	
NC			No Connect	

Pin Names	l/O Type	# of Pins	Description of Signals
RxIn	I	3	Negative LVDS Differential Data Output
RxIn+	I	3	Positive LVDS Differential Data Output
RxCLKIn-	I	1	Negative LVDS Differential Clock Output
RxCLKIn+	I	1	Positive LVDS Differential Clock Output
RxOut-	0	21	LVTTL Level Data Outputs Goes HIGH for /PwrDn LOW
RxCLKOut	0	1	LVTTL Level Clock Output
/PwrDn	I	1	LVTTL Level Input; Refer to Transmitter and Receiver Power-up and Power-down Operation Truth Table
PLL V _{CC}	I	1	Power Supply Pin for PLL
PLL GND	I	2	Ground Pins for PLL
LVDS V _{CC}	I	1	Power Supply Pins for LVDS Inputs
LVDS GND	I	3	Ground Pin for LVDS Inputs
Vcc	I	4	Power Supply Pins for LVTTL Outputs
GND	I	5	Ground Pins for LVTTL Outputs
NC			No Connect

Truth Tables

Transmitter

	Inputs	Outputs			
TxIn	TxCLKIn	PwrDn ⁽¹⁾	TxOut±	TxCLKOut±	
Active	Active	HIGH	LOW / HIGH	LOW / HIGH	
Active	LOW / HIGH High Impedance	HIGH	LOW / HIGH	Don't Care ⁽²⁾	
Floating	Active	HIGH	LOW	LOW / HIGH	
Floating	Floating	HIGH	LOW	Don't Care ⁽²⁾	
Don't Care	Don't Care	LOW	High Impedance	High Impedance	

Notes:

1. The outputs of the transmitter or receiver remain in a high-impedance state until V_{CC} reaches 2V.

2. TxCLKOut± settles at a free running frequency when the part is powered up, PwrDn is HIGH and the TxCLKIn is a steady logic level LOW / HIGH / high-impedance.

Receiver

	Inputs		Out	puts
RxIn±	RxCLKIn±	/PwrDn ⁽³⁾	RxOut	RxCLKOut
Active	Active	HIGH	LOW / HIGH	LOW / HIGH
Active	Failsafe Condition ⁽⁴⁾	HIGH	Last Valid State	HIGH
Failsafe Condition ⁽⁴⁾	Active	HIGH	HIGH	LOW / HIGH
Failsafe Condition ⁽⁴⁾	Failsafe Condition ⁽⁴⁾	HIGH	Last Valid State ⁽⁵⁾	HIGH
Don't Care	Don't Care	LOW	LOW	HIGH

Notes:

3. The outputs of the transmitter or receiver remain in a high-impedance state until V_{CC} reaches 2V.

4. Failsafe condition is defined as the input being terminated and un-driven, shorted, or open.

5. If RxCLKIn± is removed prior to the RxIn± date being removed, RxOut is the last valid state. If RxIn± data is removed prior to RxCLKIn± being removed, RxOut is HIGH.

FIN1215 / FIN1216 / FIN1217 — LVDS 21-Bit Serializers / De-Serializers

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Par	Min.	Max.	Unit	
V _{CC}	Power Supply Voltage	-0.3	+4.6	V	
V _{TTL}	TTL/CMOS Input/Output Voltage		-0.5	+4.6	V
V _{LVDS}	LVDS Input/Output Voltage		-0.3	+4.6	V
I _{OSD}	LVDS Output Short-Circuit Current			Continuous	
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Maximum Junction Temper		+150	°C	
TL	Lead Temperature			+260	°C
	Human Body Model, JESD22-A114	LVDS I/O to Ground		10.0	kV
ESD	(1.5kΩ, 100pF)	All Pins (FIN1215, FIN1217)		6.5	ΝV
	Machine Model, JESD22-A115, 0Ω, 200pF	FIN1215, FIN1217 Only		>400	V

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature	-40	+85	°C
V _{CCNPP}	Maximum Supply Noise Voltage ⁽⁶⁾		100	mV_{PP}

Note:

6. $100mV V_{CC}$ noise should be tested for frequency at least up to 2MHz. All the specifications should be met under such a noise level.

Transmitter DC Electrical Characteristics

Typical values are at $T_A=25$ °C and with $V_{CC}=3.3V$; minimum and maximum are at over supply voltages and operating temperatures ranges, unless otherwise specified.

Symbol	Parameter	Test Con	ditions	Min.	Тур.	Max.	Units
Transmitte	r LVTTL Input Characteristics						
VIH	Input High Voltage			2.0		Vcc	V
V _{IL}	Input Low Voltage			GND		0.8	V
VIK	Input Clamp Voltage	I _{IK} =-18mA			-0.79	-1.50	V
I _{IN}	Input Current	V _{IN} =0.4V to 4.	6V		1.8	10.0	
IN		V _{IN} =GND		-10.0	0		μA
Transmitte	r LVDS Output Characteristics ⁽⁷⁾						
V _{OD}	Output Differential Voltage		250		450	mV	
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH	− R∟=100Ω, Figure 4				35	mV
Vos	Offset Voltage	$R_{L}=100\Omega$, Figu	1.125	1.250	1.375	V	
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH			25		mV	
l _{os}	Short-Circuit Output Current	V _{OUT} =0V			-3.5	-5.0	mA
I _{OZ}	Disabled Output Leakage Current	D _O =0V to 4.6V /PwrDn=0V	',		±1.0	±10.0	μΑ
Transmitte	r Supply Current				•	•	
			33MHz		28.0	46.2	
	21:3 Transmitter Power Supply Current for Worst-Case Pattern with Load ^(8, 9)	R _L =100Ω,	40MHz		29.0	51.7	
I _{CCWT}	for Worst-Case Pattern with Load ^(8, 9)	Figure 7	65MHz		34.0	57.2	mA
			85MHz ⁽¹⁰⁾		39.0	62.7	
ICCPDT	Powered-Down Supply Current	/PwrDn=0.8V			10.0	55.0	μA

Notes:

 Positive current values refer to the current flowing into device and negative values means current flowing out of pins. Voltages are referenced to ground unless otherwise specified (except ΔV_{OD} and V_{OD}).

8. The power supply current for both transmitter and receiver can be different with the number of active I/O channels.

The 16-grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test
pattern approximates signal switching needed to produce groups of 16 vertical strips across the display.
 FIN1217 only.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{TCP}	Transmit Clock Period	Figure 10	11.76	Т	50.00	ns
t _{TCH}	Transmit Clock (TxCLKIn) HIGH Time		0.35	0.50	0.65	Т
t _{TCL}	Transmit Clock LOW Time		0.35	0.50	0.65	Т
t _{CLKT}	TxCLKIn Transition Time (Rising and Falling)	10% to 90% Figure 11	1.0		6.0	ns
t _{JIT}	TxCLKIn Cycle-to-Cycle Jitter				3.0	ns
t _{XIT}	TxIn Transition Time		1.5		6.0	ns
LVDS Tra	ansmitter Timing Characteristics					
t _{TLH}	Differential Output Rise Time (20% to 80%)	F i a		0.75	1.50	ns
t⊤⊣∟	Differential Output Fall Time (80% to 20%)	Figure 8		0.75	1.50	ns
t _{STC}	TxIn Setup to TxCLNIn	Figure 10	2.5			ns
t _{HTC}	TxIn Holds to TCLKIn	f=85MHz FIN1217 only	0			ns
t _{TPDD}	Transmitter Power-Down Delay	Figure 17 ⁽¹¹⁾			100	ns
tтсср	Transmitter Clock Input to Clock Output Delay	Figure 13 T _A =25°C, V _{CC} =3.3V	2.8	5.5	6.8	ns
Transmit	ter Output Data Jitter (f=40 MHz) ⁽¹²⁾					
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.25	0	0.25	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1		a-0.25	а	a+0.25	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2	Figure 20	2a-0.25	2a	2a+0.25	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3	$a = \frac{1}{f \times 7}$	3a-0.25	3a	3a+0.25	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4	f×7	4a-0.25	4a	4a+0.25	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5		5a-0.25	5a	5a+0.25	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6		6a-0.25	6a	6a+0.25	ns
Transmitt	er Output Data Jitter (f=65 MHz) ⁽¹²⁾					
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.2	0	0.2	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1		a-0.2	а	a+0.2	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2	Figure 20	2a-0.2	2a	2a+0.2	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3	$a = \frac{1}{f \times 7}$	3a-0.2	За	3a+0.2	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4		4a-0.2	4a	4a+0.2	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5		5a-0.2	5a	5a+0.2	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6		6a-0.2	6a	6a+0.2	ns

Continued on following page...

FIN1215 /
FIN1216 / F
FIN1217 —
LVDS 21-Bit S
: Serializer
's / De-Serializers

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Transmitte	r Output Data Jitter (f=85 MHz, FIN1217 only) ⁽¹²⁾				
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.2	0	0.2	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1	-	a-0.2	а	a+0.2	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2	$ \begin{array}{c} \text{only}^{(12)} \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array} $ Figure 20 $a = \frac{1}{f \times 7}$ $f = 40 \text{MHz}$	2a-0.2	2a	2a+0.2	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3		3a-0.2	3a	3a+0.2	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4		4a-0.2	4a	4a+0.2	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5		5a-0.2	5a	5a+0.2	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6		6a-0.2	6a	6a+0.2	ns
		f=40MHz		350	370	
t _{JCC}	Transmitter Clock Out Jitter, Cycle-to cycle	f=65MHz		210	230	ps
	Figure 23			2 a a+(.2 2a 2a+ .2 3a 3a+ .2 4a 4a+ .2 5a 5a+ .2 6a 6a+ .350 37 210 23	150	μs
t _{TPLLS}	Transmitter Phase Lock Loop Set Time ⁽¹³⁾	Figure 15 ⁽¹²⁾			10.0	ms

Notes:

Outputs of all transmitters stay in 3-STATE until power reaches 2V. Clock and data output begins to toggle 10ms after V_{CC} reaches 3V and /PwrDn pin is above 1.5V.
 This output data pulse position works for both transmitters with 21 TTL inputs, except the LVDS output bit mapping difference (see Figure 19). Figure 20 shows the skew between the first data bit and clock output. A two-bit cycle delay is guaranteed when the MSB is output from transmitter.

13. This jitter specification is based on the assumption that PLL has a reference clock with cycle-to-cycle input jitter of less than 2ns.

Receiver DC Electrical Characteristics

Typical values are at T_A=25°C and with V_{CC}=3.3V. Positive current values refer to the current flowing into device and negative values means current flowing out of pins. Voltages are referenced to ground unless otherwise specified (except ΔV_{OD} and V_{OD}). Minimum and maximum values are at over supply voltage and operating temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
LVTTL/CM	IOS DC Characteristics						
V _{IH}	Input High Voltage			2.0		V _{CC}	V
VIL	Input Low Voltage			GND		0.8	V
V _{OH}	Output High Voltage	I _{OH} =-0.4mA		2.7	3.3		V
V _{OL}	Output Low Voltage	I _{OL} =2mA				0.3	V
VIK	Input Clamp Voltage	I _{IK} =-18mA				-1.5	V
I _{IN}	Input Current	V _{IN} =0V to 4.6V		-10		10	μA
I _{OFF}	Input/Output Power-Off Leakage Current	V _{CC} =0V, All LVTTL Inputs/Outputs 0V to 4.6V				±10	μA
los	Output Short-Circuit Current	V _{OUT} =0V			-60	-120	μA
Receiver	LVDS Input Characteristics						
Vтн	Differential Input Threshold HIGH	Figure 6, Table 2				100	mV
V _{TL}	Differential Input Threshold LOW	Figure 6, Table 2		-100			mV
VICM	Input Common Mode Range	Figure 6, Table 2		0.05		2.35	V
	In put Current	V _{IN} =2.4V, V _{CC} =3.6V or 0V				±10.0	μA
I _{IN}	Input Current	V _{IN} =0V, V _{CC} =3.6V or 0V				±10.0	
Receiver	Supply Current						
	3:21 Receiver Power Supply Current for Worst Case Pattern with Load ⁽¹⁴⁾	33	BMHz			66	mA
		40)MHz		56	74	
ICCWR		C _L =8pF, Figure 7	5MHz		75	102	
		85MHz ⁽¹⁵⁾	5MHz ⁽¹⁵⁾		92	125	
I _{CCPDR}	Powered Down Supply Current	/PwrDn=0.8V (RxOut stays LOW)			NA	400	μA

Notes:

14. The power supply current for the receiver can be different due to the number of active I/O channels.

15. 85MHz specification for FIN1218 only.

Receiver AC Electrical Characteristics

Values are at over supply voltages and operating temperatures, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{RCOL}	RxCLKOut LOW Time		10.0	11.0		ns
t _{RCOH}	RxCLKOut HIGH Time	Figure 12	10.0	12.2		ns
t _{RSRC}	RxOut Valid Prior to RxCLKOut	Rising Edge Strobe	6.5	11.6		ns
t _{RHRC}	RxOut Valid After RxCLKOut		6.0	11.6		ns
t _{RCOP}	Receiver Clock Output (RxCLKOut) Period		15.0	Т	50.0	ns
t _{RCOL}	RxCLKOut LOW Time	Figure 12	5.0	7.8	9.0	ns
t _{RCOH}	RxCLKOut HIGH Time	Rising Edge Strobe	5.0	7.3	9.0	ns
t _{RSRC}	RxOut Valid Prior to RxCLKOut		4.5	7.7		ns
t _{RHRC}	RxOut Valid After RxCLKOut		4.0	8.4		ns
t _{RCOP}	Receiver Clock Output (RxCLKOut) Period		11.76	Т	50.00	ns
t _{RCOL}	RxCLKOut LOW Time	Figure 12 Rising Edge Strobe f=85MHz FIN1218 only	4.0	6.3	6.0	ns
t _{RCOH}	RxCLKOut HIGH Time		4.5	5.4	6.5	ns
t _{RSRC}	RxOut Valid Prior to RxCLKOut		3.5	6.3		ns
t _{RHRC}	RxOut Valid After RxCLKOut		3.5	6.5		ns
t _{ROLH}	Output Rise Time (20% to 80%)			2.2	5.0	ns
t _{ROHL}	Output Fall Time (80% to 20%)	C _L =8pF, Figure 9		2.1	5.0	ns
t _{RCCD}	Receiver Clock Input to Clock Output Delay	$\begin{array}{c} T_{A}{=}25^{\circ}C, \ V_{CC}{=}3.3V \\ Figure \ 14^{(\text{Error!}} \\ \text{Reference source not found.}) \end{array}$	3.5	6.9	7.5	ns
t _{RPDD}	Receiver Power-Down Delay	Figure 18			1.0	ms
t _{RSPB0}	Receiver Input Strobe Position of Bit 0		1.00		2.15	ns
t _{RSPB1}	Receiver Input Strobe Position of Bit 1	ut Strobe Position of Bit 1			5.8	ns
t _{RSPB2}	Receiver Input Strobe Position of Bit 2		8.10		9.15	ns
t _{RSPB3}	Receiver Input Strobe Position of Bit 3	sition of Bit 3 f=40MHz			12.6	ns
t _{RSPB4}	Receiver Input Strobe Position of Bit 4		15.1		16.3	ns
t _{RSPB5}	Receiver Input Strobe Position of Bit 5		18.8		19.9	ns
t _{RSPB6}	Receiver Input Strobe Position of Bit 6		22.5		23.6	ns

Continued on following page...

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{RSPB0}	Receiver Input Strobe Position of Bit 0		0.7		1.4	ns
t _{RSPB1}	Receiver Input Strobe Position of Bit 1		2.9		3.6	ns
t _{RSPB2}	Receiver Input Strobe Position of Bit 2		5.1		5.8	ns
t _{RSPB3}	Receiver Input Strobe Position of Bit 3	Figure 21 f=65MHz	7.3		8.0	ns
t _{RSPB4}	Receiver Input Strobe Position of Bit 4		9.5		10.2	ns
t _{RSPB5}	Receiver Input Strobe Position of Bit 5		11.7		12.4	ns
t _{RSPB6}	Receiver Input Strobe Position of Bit 6		13.9		14.6	ns
t _{RSPB0}	Receiver Input Strobe Position of Bit 0	Figure 21 f=85MHz FIN1218 only	0.49		1.19	ns
t _{RSPB1}	Receiver Input Strobe Position of Bit 1		2.17		2.87	ns
t _{RSPB2}	Receiver Input Strobe Position of Bit 2		3.85		4.55	ns
t _{RSPB3}	Receiver Input Strobe Position of Bit 3		5.53		6.23	ns
t _{RSPB4}	Receiver Input Strobe Position of Bit 4		7.21		7.91	ns
t _{RSPB5}	Receiver Input Strobe Position of Bit 5		8.89		9.59	ns
t _{RSPB6}	Receiver Input Strobe Position of Bit 6		10.57		11.27	ns
t _{rskm}		f=40MHz, Figure 22	490			ps
	RxIn Skew Margin ^{(Error! Reference source not}	f=65MHz, Figure 22	400			
	found.)	f=85MHz FIN1218 only Figure 22	252			
t _{RPLLS}	Receiver Phase Lock Loop Set Time	Figure 16			10.0	ms

Receiver AC Electrical Characteristics (Continued)

Notes:

 Total channel latency from serializer to deserializer is (T + t_{TCCD}) + (2•T + t_{RCCD}).
 Receiver skew margin is defined as the valid sampling window after considering potential setup/hold time and minimum/maximum bit position.

FIN1215 / FIN1216 / FIN1217 — LVDS 21-Bit Serializers / De-Serializers

AC Loadings and Waveforms (Continued)

Receiver Clock-In to Clock-Out Delay (Rising Edge Strobe) Figure 14.

FIN1215 / FIN1216 / FIN1217 — LVDS 21-Bit Serializers / De-Serializers

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Т

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC